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S U M M A R Y  
The solutions of nonhomogeneous boundary value problems which arise from the study of the dynamics of bounded, 
elastic solids are represented by the superposition of two components: (a) a "quasi-static" solution which satisfies the 
nonhomogeneous boundary conditions, and (b) an eigenfunction expansion which satisfies the corresponding homo- 
geneous boundary conditions. The method obviates the frequently used but often cumbersome technique of integral 
transforms, and a resolution of the problem is achieved by the use of classical mathematical analysis. The general 
theory developed is illustrated by considering the problem of point symmetric motion of a suddenly loaded spherical 
shell for which a complete solution is presented. 

1. Introduction 

One of the central problems of the classical, linear theory of elastodynamics is concerned with 
the determination of the displacement field and associated stress field in a bounded solid 
subjected to time and space dependent body forces and admissible boundary conditions, i.e., 
in the general case we have to solve a system of nonhomogeneous, partial differential equations 
with nonhomogeneous boundary conditions. In the case of homogeneous boundary conditions, 
solutions are often represented by an eigenfunction expansion, with each eigenfunction 
satisfying the imposed homogeneous boundary condition. In the case of nonhomogeneous 
boundary conditions, an eigenfunction expansion generally fails to satisfy the required 
boundary conditions, and the method of integral transforms has been successfully applied by 
many investigators to obtain a solution. Apart from the fact that each case requires individual 
judgement in the selection of the appropriate transform kernel, the problem of inversion is 
often quite difficult, and occasionally the required transform inverse does not exist. 

In order to circumvent these difficulties, and to facilitate a solution by classical mathematical 
techniques alone, it is possible to adopt the following point of view. The (symbolic) solution u 
is assumed to be represented by the superposition of two parts u--v + w, where the "quasi- 
static" solution v satisfies the given problem with all inertia terms deleted. Thus v satisfies the 
reduced, nonhomogeneous field equations as wellas the nonhomogeneous boundary conditions 
on u. Although v depends on the space variables (x 1, x z, x 3) as well as on time t, time is a param- 
eter in this part of the solution. The second part of the solution w is taken as an eigenfunction 
expansion such that the eigenfunctions satisfy certain homogeneous boundary conditions. The 
method proves to be useful for the solution of nonhomogeneous field equations, even if the 
boundary conditions on u are homogeneous. In this case both v and w are required to satisfy 
the same homogeneous boundary conditions, and the resulting solution representation is 
Often found to have convergence characteristics which are superior to the conventional eigen- 
function expansion of u. 

* Results presented in this paper were obtained, in part, from research supported by the Air Force Office of Scientific 
Research under Grant No. AF-AFOSR-71-1971A. Computer facilities were generously made available by the Com- 
puting Center of the State University of New York at Buffalo, which is partially supported by NIH Grant FR-00126 
and NSF Frant GP-7318. 
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The concepts underlying the present approach are not new, and special, isolated applications 
to problemsof  the vibrating string and the Euler-Bernoulli beam can be found in the classical 
papers of Duhamel [1], and Phillips [2]. Recent generalizations of this technique and applica- 
tions to the problems of vibrations of beams, plates, etc., can be found in references 1-3] through 
[8]. The concepts discussed above are generally applicable to linear partial differential equa- 
tions (see [9] through [11]). Some of heuristic considerations underlying the present method 
were contributed by D. Williams in [12], although his work is restricted to one-dimensional 
structures and neglects to treat the case of time-dependent boundary conditions. We now 
proceed to develop the general method for the case of elastic bodies of bounded extent within 
the framework of the usual small deformation assumptions. In the following, general (curvi- 
linear) coordinates are employed, and we adopt the notation of 1-13]. 

2. Statement and resolution of the boundary value problem 

We consider a bounded, elastic solid which occupies the region V+ S in its undeformed con- 
figuration, where V is an open domain and S is its boundary. We wish to find the displacement 
field u i (x 1, x 2, X 3, t ) - u  ~ (x, t) which satisfies the stress-equations of motion 

q2ij[ j-~- B i ~- pi~ i (1) 

throughout V for all t > O, the initial conditions 

u ~ (x, O) = f '  (x), fi' (x, O) = g' (x) (2) 

throughout V at t =0, and the following admissible boundary conditions on S for all t > O: 
(a) the displacement vector is specified on S1, i.e.~ 

u~= F ~(x, t) o n  S 1 (3a) 

(b) the traction vector is specified on $2, i.e., 

z i~ nj = G i (x, t) on $2 (3b) 

where ~ is the unit (outer) normal vector relative to S. 
(c) the normal displacement and shear stress are specified on Sa, i.e., 

uin, = u(,)(x, t), viJnj--'rklnkn, n i= zi(x, t) on $3 (3c) 

(d) the normal stress and tangential displacement are specified on S~, i.e., 

ziJninj= a(x,  t), u i -uJn jn  i =  ult)(x, t) on $4. (3d) 

(e) the traction vector is specified to include a linear elastic restoring force ( -  ~ u~) on Ss, i.e., 

ziJnj+o~~ = H i (x, t) on S5 (3e) 

where the elastic foundation moduli satisfy the conditions eiJ(x)= ei~(x) and 2W~ = eiJu~ui > 0 
for u~#0 on S 5. None of the sets S a through S 5 need be connected, and in any particular case 
one or more of them may be empty, provided that S = S I  + $ 2 + $ 3 + $ 4 + $ 5 .  The stress and 
strain tensors are related to the displacement vector through the familiar relations 

2eij = uil j + uj[i (4) 

@J = C ijkl ekt = c i jk lukl l  (5) 
where 

c i j k l =  c J i k t =  C ijlk = C klij (6) 

and 2Wc=Cijkteijekl > 0  for e i j # O  in V. If the density p(x) >0, the body force vector B~(x, t) 
and the twenty-one independent elastic constants C ~kt (x) are specified in V, then one can show 
that the solution of the problem posed by equations (1) through (6) is unique. The uniqueness 
proof is based on the positive definite character of the potential energy densities W~ and W~ 
and of the kinetic energy density �89 (pti~tii). 
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We now propose to characterize the solution of the problem posed by (1) through (6) by 

u i (x, t) = v i (x, t) + E Wl,)(x) q~ (t) (7) 
S 

where v i (x, t) is the "quasi-static" solution of the reduced problem, defined by (1), (3), (4), (5), 
and (6), when the inertia terms in (1) are deleted, i.e., 

ziJ(v)l j+B i =  0 in V 

where 
�9 ~J (v) = c ~j~ v~l, 

and 
V i =  F i on S1 

z ij(v) n j = G  i on $2 

v % =  u(.). on 

ziJ(v)ninj= a ,  v i - v J n j n  i =  u(,) on $4 

ziJ(v)nj+alJv~ = H i on S 5 . 

(8a) 

(Sb) 

(9a)  

(9b) 

(9c) 

(9d) 

(9e) 

The eigenfunctions WI~ )(x) of the associated homogeneous problem are characterized by 
the equations 

ij 2 i z(~)lj+pco s W(~) = 0 in V (10a) 
where 

ij = c i j k l  W ( S ) l l  ( 1 0 b )  Z(s) 

and the homogeneous form of the boundary conditions (3), i.e., 

WI~)= 0 on S 1 (lla) 

ij - 0  on $2 ( l lb)  "c (s) r/j - -  

i ij n _kl " W(~)ni=O, T(~) j--Lt~)nkntn~= 0 on $3 (l lc)  

*i~,n, ni---0,  W i , , - W i ~ ) n j n i =  0 on S ,  (110) 

z l l )n j+~iJW~)= 0 on $5. (l le) 

The trivial solution WI~)--0 and the rigid body displacement field W(~)=a+ b • R 0, where a 
and b are constant vectors and R 0 is the position vector in V, are excluded from the set of 

: eigenfunctions. To each eigenfunction WI~ ) there corresponds an eigenvalue co~, where % is a 
natural frequency of vibration. We shall assume that the characterization of the eigenvalue 
problem (10) and (11) results in a denumerable set of solutions {Wit), % ;  r =  1, 2, 3 . . . .  }. The 
validity of this assumption is discussed in [14] and [15]. The eigenvalues can be shown to be 
both real and positive numbers (see pp. 180-181 of [16] ). If the rigid body motion is not an 
admissible eigenfunction, the case of a vanishing eigenvalue does not arise, and the eigenvalues 
can be ordered as follows' 0 <  e)l 2 < e) 2 < co 2 < . . .  If there are no degeneracies (i.e., if the 
eigenvalues are distinct), the eigenfunctions can be shown to be orthogonal (see p. 180 of 
[16]). If degeneracies occur, i.e., if two or more different eigenfunctions correspond to the 
same eigenvalue, each set of degenerate eigenfunctions can be orthogonalized by the G r a m -  
Schmidt process. In either case we have 

(pW~,) WlS))v = 5~ (12) 

where the symbol ( )v  denotes the volume integral of the enclosed expression over the region 
V. Equation (12) also implies that the eigenfunctions WI, ) have been suitably normalized. 

In view of equations (3) and (9), the assumed solution (7) satisfies the non-homogeneous 
boundary conditions (3). To determine the scalar functions q,(t), we now substitute (7) into (1). 
and (5). If, in addition, we apply (8) and (10), we obtain 
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i .. 2 �9 (13a) pW(s)(q~+(D ~ q~) = - p i Y .  
s 

Similarly, if we set t = 0  in (7) and substitute the resulting equations into (2), we readily obtain 

i __ i i W(~) qs(0) -- f ( x ) -  v (x, 0) (13b) 
S 

Z wi~) 0~(0) = g'(x)- r (x, 0). (13c) 
S 

We now multiply (13a), (13b), and (13c) by W~ r), pWl r), and pW} ~), respectively, and integrate 
the resulting equations over the volume V. Upon application of (12), we obtain 

/~r+(D2qr = Qr(t) for t > 0  (14a) 

qr(O)- Qr(O) = (pW~) f i ) v  (14b) 

gl,(O)- Qr(O) = (pW}~ gi)v (14c) 

where 

Or(t) = - (p~' w T ) ~  (t5) 

A more convenient form of Qr(t) can be obtained with the aid of (10) as follows : 

2 (D, Q~(t) (_oo)2  i ij = = ( ~ r ~ l j v ~ } ~  �9 W(~)Vi)v 

However, in view of (5), (6), and the definition of the covariant derivative, we have 

ij ij ij (~(,) v~)l j -  ~(ol jv~ = z ( ~ ) v i l j  = ~J(v) W}~)l j=  (v~J (v) wlr) )l j -  ~J(v)r j Wl ~) �9 

This result, together with the integral theorem of Green/Gauss/Ostrogradskii  yields 

0)~ Q~(t) = (~i~ ~j~,  - ~ j (~)~  w ~ > s  + (~'~(% wl~> 
where the symbol ( )s  denotes the integral of the enclosed expression over the region S. 
Substitution of (11), (8), and (9) into the preceding result then yields the desired form of Q (t)  

0)2 Q~( t) = - ( B i Wl~))v + ( zl]) nj Fi)s , - ( G i W!~ s~ 
ij (r) i ij I~Wil. ) ~ i > ~ 4 -  ( H '  W}/ ' ) )~  5 ( 1 6 )  + (u(.)z(on ~ n j -  W, z )s~ + ( u ( t ) i z ( r ) n j  - 

The solution of (14a) can be written 

1 
qr(t) = [q~(0)-- Q~(0)] cos 0)~t + - -  [0 , (0 ) -  0r(0)] sin 0)rt 

(D r 

f' +Q~(t)-(D~ Qr(~) sin (D,(t-r (17) 
�9 0 

Thus the formal solution of the nonhomogeneous problem posed by (1) through (6) is given by 
(7), where v i satisfies (8) and (9), {W~ ~J, 0)~; r =  1, 2, 3, .. �9 is the complete solution set of (10) and 
(11) which also satisfies (12), and the scalar functions q~(t) are given by (17) in conjunction with 
(16), (14b), and (14c). 

3. Forced mot ion  o f  a spherical shell 

We now proceed to apply the general method to obtain a solution for the point symmetric, 
forced motion problem of a spherical shell referred to spherical coordinates (r, 0, q~). In this 
section we shall use the physical components of vectors and tensors, in contradistinction to 
the previous section, where tensor components were used�9 We assume that the shell is composed 
of a homogeneous, isotropic, elastic material and neglect body forces�9 It is also assumed that 
initially (at t <  0) the shell is at rest, in its reference configuration in static equilibrium, and free 
from all surface tractions. At t = 0  the concentric, spherical shell boundaries at r=R~ and 
r =Ro, R~ < R o, are subjected to the suddenly applied normal (compressive) surface pressures 
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-PI and -Po ,  respectively. This problem is characterized by the equations 

z .... +r  -~ (2Zrr--'Co0--%O) = pu,~ ] (18a) 

~r = (2+2#)u ~+22r-1 u / R ,<  r <  R o (18b) 

~oo= zo~o = 2u ~ + 2(2 + # ) r -  au (18c) 
where u is the radial displacement component. The boundary conditions are 

"Cr~ (RI, t) ---- -- P, H (t) (19a) 

"c,~ (Ro, t) = - Po H (t) (19b) 

where H(t)  is the Heaviside unit step function. The initial conditions are 

u(r, 0) = u t (r, 0) = 0.  (20) 

With reference to equation (7), we seek a solution of the problem posed by (18), (19), and (20) 
in the form 

u(r; t )=  v(r, t) + L W.(r )q , ( t ) .  (21) 
n = ] .  .. 

The associated "quasi, static" problem (see (8) and (9)) is here characterized by 

v.~ + 2r-  l v ,~ -  2r-  Z v = O , R~ < r < R o (22) 

and the boundary conditions 

(2 + 2#)v,~ (R I, t) + 22RI -a v (RI, t) = - Px H ( t ) )  (23a) 
t > 0  

(2 + 2#)v,, (Ro, t) + 22Ro 1 v (Ro, t) Po H (t) (23b) 

where t is a parameter. The solution of (22) subject to (23) is well-known (see p. 142 of [16]): 

O C2 v _ f i l l ( t ) [ ( ~ 3 - P o / P , )  r 1 (I P~ R2 l 
Pi Ro (1-/33)1- (3-472) /~I-t-  ~ 2  k" - p~/ rZ j (24a) 

%r(v) H(t)  R~ 1 
P, - (1-f13) [f13 POpx 0 - ~-~) r3 J P ~  (24b) 

"~eo(v)_ H(t)  _ Po 1 ( 1  - P o ) R ~ l  (i--73) [ p3 P,/TJ (24c) 

where 0 < fl = e l / e  0 < 1, 72 = (1 --  2•)/2 (l --  ~) and Co = [(2 + 2#)/p] ~ is the speed of dilatational 
waves. 

The eigenfunctions and associated eigenvalues satisfy the equation 

W, rr+ 2r -1 W , - 2 r  -2 W = - c o  z C~ 2 W . (25) 

In view of (23), for the present case we require the boundary conditions 

(2 + 2#) W r (RI) --]- 22 R I  1 W (R,) = 0 (26a) 
(2+ 2#) W,(Ro)+ 22Ro x W(Ro)  = 0.  (26b) 

The eigenfunctions and eigenvalues characterized by (25) and (26) are known- (see p. 287 of 
[16] ). Upon normalization by 

Ro W 2 p r2dr = 1 
R t  

we obtain 

W, = A , h  1 (z,) (27a) 
"c~ ) = p Co co, A, [-ho (z , ) -  (472/z,) hi (z,)] (27b) 
z~  ) = -~o~'r(") = p Co co, a ,  [ (1 - 272)ho (z,) + (27 Z/z,)h 1 (z,)] (27c) 
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where 
2 • A .  = (2~%/pCoRoI.) ~ , In = f lZb.h2(a.)D. 

D. = c~ [1 +43) 2 (472 - 3)/b 2 ] - fl [1 + 4T 2 (472 - -  3)/a 2] 

(1 - 4 7 2 / a  2) cos a . -  (472/a.) sin a.  

~" = ( 1 - 4 7 2 / b  2) cos b . - (4yZ/b . )  sin b. 

z. = r~o./Co, a. = R&9./Co , b. = R o ~ . / C  v 

ho (%) =- Jo ( % ) -  ( B J  A.)  Yo (z.)  , h 1 (%) -- Jl ( z . ) -  (B./  A.)  Ya (z.) 

and where Jo (z) = z -  1 sin z and Yo (z) = - z -  i cos z are spherical Bessel functions of the first 
and second kind, respectively, of order  zero. The functions j l  ( z )=z  -2 sin z - z - 1  cos z and 
y ~ ( z ) = - z  -2 cos z - z  -~ sin z are spherical Bessel functions of the first and second kind, 
respectively, of order  one, and  

Jo (a.)--(4y2/a.)j~ (a.) 
B . / A .  = Yo (an)-  (472/a.)y,  (a.)" 

The  natural  frequencies are roots  of the t ranscendental  equat ion 

tan f2 = q~(f2) (28) 

where 
4y 2 (1 -- fl)2 [/~-~2 + 4?2 (1 --f i)2]  ~-~ 

cp (#2) = f12 ~24_ 472 (1 - fl)2 (1 + fiE _ 472 fl) p2 + 1674 (1 - fl)4 

t a n  53_ o 0.9-- 

5- i f ' ,  i l  , J I 

4 

5 

2 

i 

0 

-i 

-2 

-5 
Figure 

- - (  

r 

(3-0.2 

- ' - 7  "J,/ I I I /  I J .O_ I ~'---~ r~ 7 8 

_ f 

C3 :o.2 

1, Frequency  distr ibution for a spherical shell with bo th  surfaces free. 
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and f2=(R 0 -ROO9/CD. Fig. 1 shows plots of tan f2 vs. f2 and q)(f2) vs. f2 for various values of 
the radius ratio fi and v=�89 Each intersection of these curves is a solution of (28) and thus 
corresponds to a natural frequency. It is clear that for 0 < fi< 1, the frequency equation (28) 
has a denumerable infinity of distinct, positive, real roots. 

The functions q, satisfy equations (laa), with (see (16)) 

Q. (t) = o); 2 [R 2 Po ~ (R o ) - R2 PI W~ (R I) ] H (t) (29) 

and in view of (14) and (20), 

q.(O) = Q.(O),  c). = 0 . ( 0 ) .  (30) 

Upon substitution of (29) and (30) into (17), we obtain ( , )cos.t 
q . ( t ) = - R 2 p i A . h l ( a . )  1 c~. (31) 2 fl co. 

We now have all the components of the complete solution, which can be written as 

pCgpi RoU _pCgpi RoY 2 (1_ f l )221 (1  e"P~  h l ( z " ) . c ~  pl]hl(a. ) E22D. (32a) 

r r r_  %~(v) 2 ( 1 - f l ) ~  (1 c~. Po~'ho(z.)-(472/z.)hl(z.).cosf2.r (32b) 
PI Pt .=1  \ fl PI/ hl(a.) Q.D. 

reO-PI %e(V)P1 2(1 -fi)  ( ) 
1 e. Po (1-272)ho(z.)+(272/z.)hl(z.) cos 12.~ 

(32c) 
n = l  f l  PI hll~ - ~'-~nDn 

where r = Co t/Ro (1-fl). We consider the case Po/PI=O and v=�89 and with the aid of (32) the 
displacement u and stress "coo were calculated at r = R~ and are shown in Figures 2 and 3, 
respectively, as a function of the dimensionless time r. The sudden application of the pressure 

- P~ to the internal surface of the shell at z =0 produces a dilatational wave which propagates 

~,co .~(R,,~) 

/4.0-- 

3.5 

5.0 

2.5 

2 .0 -  

- ~_-{ 

- Po 0 
Pz 

(3 =0.8 

1.0 

0.5 

�9 " r  i i i I i i 
0 2 4 6 8 10 12 1/t . 

Figure 2. Displacement vs. time at the inner surface. 

I "- ' l  "~l T 
16 18 20 
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Po:o / \ 
5 -  Pz 

2 -  

l 

0 

Figure 3. Stress vs. time at the inner surface. 

'1: 

through the shell to the outer surface from which it is reflected at ~ = 1. At ~ = 2 this reflected 
wave returns to the inner surface where it is again reflected, thus beginning another cycle. The 
arrival of these dilatational waves at the inner surface of the shell at the times ~ = 2, 4, 6, 8, 
etc., is clearly evident in Figures 2 and 3. Because of the point symmetric character of the 
present problem there is only one nonvanishing displacement component. For an application 
of the present method of solution to the case of three (generally) nonvanishing displacement 
components,  the reader is referred to [17].  
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